016_002 Homomorphic CS-2 Agregate BLS signatures New approach AA $PrK = z$ $C_{\Delta\beta}$ Audit Authority $PuK = \beta$ $c_{2,3}$ \mathcal{C}_{3} $c_{4\beta}$ \mathcal{W}_4 n_3
 m_3 = 1000 $T_{x}A$ $\frac{1}{2}$ B 3 $B1 - 2000$ $m_1 + m_2 = m_3 + m_4 = 5000$ $m_1 + m_2 - m_3 + m_4 - 2000$
The new mod $p = n_s \cdot n_u$ mod p $m_{4} = 4000$
 R_{4} $B2 \frac{m_2=3000}{m_2}$ c_2 1. Taxes declaration to AA. 2. To prove to the Net, that transaction is honest. $BS_1: Enc_3 (l_4, n_1) = G_3 = (E_{13}, D_{13})$ $[Enc_a(T_1, n_1) = C_1 = (E_1, D_1)$ $B_2: Enc_{\beta}(l_2, n_2) = C_{2\beta} = (E_{2\beta}, D_{2\beta}) \int [Enc_{a}(r_2, n_2) = C_2 = (E_{2}, D_{2})$ $Dec_{z}(C_{1\beta})=u_{1}\rightarrow countets$ m_{1} $Dec_{x}(C_{1})=n_{1}\rightarrow$ computes m_{1} $Dec_{z}(C_{2\beta})=n_{2}\rightarrow complexon_{2}$ $Dec_{x}(c_{2})=n_{2}-conputes m_{2}$ $f(t: 4)$ $C_{12} = C_1 \cdot C_2$ Net 2) encrypts c_{35} Euch(r_3 , n_3) = (E_{33} , $D_{\beta 3}$) {
encrypts c_{45} Euc_e(r_4 , n_4) = (E_{34} , $D_{\beta 4}$) } c_{345} c_{35} c_{48} + Net c_{12} and $c_{34\,P}$ encrypted the same data: $n_{12} = n_1 \cdot n_2$ modp $n_{34} = n_3 \cdot n_4$ modp but with the different Pulk, namely n_{12} with Pulka = a New with Pulk AA = B.

 $\omega_{\rm c}$, $\omega_{\rm c}$ $AT = I -$ Therefore c_{42} + c_{34B} It must prove that cipbertexts c_{42} and c_{343} encrypted the same value $n_{\text{Bal}} = n_{12} = n_{34}$ Net. Proof of two ciphertexts equivalency. **Schnorr Identification: Zero Knowledge Proof - ZKP** $\mathbf{PP} = (p, g)$ **. Schnorr Id** Scenario: **Alice** wants to prove **Net** that she knows her Private Key - PrK_A = *x* which corresponds to her Public Key - **PuKA=** *a* = *g ^x* **mod** *p* not revealing **PrKA=** *x*. $A: Prover P(x, a)$ **ZKP** of knowledge PrK=x: 1. Computes commitment *t* for random number \boldsymbol{i} : \mathcal{B} : Verifier $V(a)$ \mathbf{i} =randi $(\mathbf{p-1})$ t, a t, a t $t = g^l \mod p$ 2. Generates challenge h: h =randi $(p-1)$ ϵ ^h \mathbf{h} 3. Computes response res: res res $res=i+xh \mod (p-1)$ res Verifies: e^{res} =ta^h mod p Time **Non-Interactive Zero Knowledge Proof - NIZKP** $\text{PP} = (p, g)$ **. NIZKP** Scenario: **Alice** wants to prove **Net** that she knows her Private Key - PrK_A = *x* which corresponds to her Public Key - **PuKA=** *a* = *g ^x* **mod** *p* not revealing **PrKA=** *x* and using non-interactive protocol. Alice chooses at random u , $1 \lt u \lt p$ -1 and computes number r : *r=g ^u* **mod** *p*. (2.19) **Alice** computes H-function value *h* of the number *r*: $h=H(r)$, (2.20) **Alice** computes value *s*: $s=u+ xh \mod (p-1)$. (2.21) **Alice** declares the values $\pi = (r, s)$ to the **Net**. **Net** according to (2.20) computes *h* and verifies if: **g** *s* mod $p = ra^h \mod p$. (2.22) $\begin{array}{|c|c|c|c|}\hline \text{V1} & \text{--}\text{V2} \ \hline \end{array}$ Symbolically this verification function we denote by **Ver(***a,*π*,h***)=V{***True***,** *False***}**{**1**, **0**}. (2.23)

